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LETTER TO THE EDITOR 

On growth kinetics at deep quenches 
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38042 Grenoble Ctdex, France 

Received 14 November 1988 

Abstract. We show that the timescale, tg, for rapid growth onset following the nucleation 
stage, should in general be non-monotonic as a function of quench depth. This behaviour is 
controlled by the corresponding non-monotonic variation of the critical germ size. 

Classical nucleation theory [ 1,2]  works well for shallow quenches, when supersaturation 
(or undercooling) is weak compared with barrier height again nucleation, AE,. It leads 
first to the static quantities, AE, and R, (the critical germ radius): 

R ,  = 2y/Af A E ,  = 3 Jc Y 3  [ll(Af>*I (1) 

where y is the interfacial energy, f the free-energy density (including the chemical 
potential term whenever the order parameter qj is conserved, as e.g. in precipitation). 
Afis the free-energy imbalance between metastable and stable phases. In general, Afis 
simply proportional to undercooling AT and to A V ,  the order-parameter shift from 
coexistence. 

The full energy includes a stiffness term, t A l V q j / * ,  which controls the kinetics 
(equation (3) below) and the nucleation rate 

J - A q\/Tly exp( - A E , / T )  - z;’, (2) 

The nucleation time z, decreases exponentially with quench depth for shallow 
quenches due to the decrease of barrier height (1). At deeper quenches, z, increases 
due to the combined effect of <T exp( - A E , / T )  and A (  T ) .  (The intrinsic kinetics slow 
down at low temperatures, see e.g. [ l]) .  Hence the celebrated ‘C shape’ of z, plotted 
horizontally against temperature in a so-called time-temperature transformation (m) 
diagram. 

That later-stage timescales should be C-shaped too, while not following the same 
quantitative laws, has perhaps not been correspondingly appreciated. A recent numeri- 
cal ‘experiment’ [ 3 ]  identifies a time zg for ‘catastrophic growth’ of crystalline nuclei in 
quenched liquids. For a broad set of initial conditions, z,is much larger than z, and shows 
a non-monotonic dependence on quench depth, first decreasing but then increasing again 
as quenching proceeds further. 

We show here that such a behaviour-definite, but as yet only qualitative-is con- 
sistent with the standard Becker-Doring theory [2]. We shall stress the quantitative 
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effects of order-parameter conservation. This notion has been fully discussed by Nozi- 
&res [4]. (In facet growth from the melt, for instance, q is not conserved since the liquid 
acts as an external reservoir.) 

To put our point as simply as possible, we shall assume that (i) viable nuclei grow 
slowly enough for the inequality z,, < zg to be enforced; in other words, the two 
processes, nucleation and growth, do not interfere much and (ii) problems associated 
with release of latent heat (recalescence) can be ignored within the limits of the model. 

Once formed, a nucleus with radius R > R, grows according to 

R - A(R - R,) or R = c(l  - R,/R) ( 3 )  
for a conserved or non-conserved q ,  respectively. In these expressions, the negative 
terms represent the slowing-down effect of the capillary force. The rates A and c are 
given by the standard theory [2]. In the first case (q conserved), the growth is exponential 
(‘catastrophic’), with characteristic time 

t g  = R ~ / D , A ~  - A - I  (4) 
where D, is a self-diffusion coefficient and A q  is a measure of supersaturation. (This is 
in fact the relevant case for the work in [ 3 ] ,  with D, replaced by a thermal diffusivity.) 

For a non-conserved order parameter, the growth is asymptotically linear, after a 
typical time 

zg - R,/c = yR,/DAf ( 5 )  

where D is an interface, or ‘wall’, diffusivity. Strictly speaking, (4) and (5) imply weak 
undercooling. The following points are to be noted. 

(i) The kinetics are controlled by a bulk (Os), or interface (D), transport coefficient, 
depending on whether q is or is not conserved. 

(ii) In either case, the variation of zg with quench depth will be controlled, in general, 
by that of the critical radius R,-which is known to be C-shaped. Close to the coexistence 
curve (q = qCx),  R;’ is of course proportional to the level of undercooling, whereas 
R;’ varies as the square root of the distance to the spinodal for gj ̂ I qsp [5] (see comment 
below). 

(iii) The activation energy AE,-the variation of which with supersaturation domi- 
nated the behaviour of z, (2)-has now dropped out from both (4) and ( 5 )  for tg. Growth 
time-scales are ‘barrier free’ and the only residual T-dependence, besides R,( T )  and the 
undercooling itself, is associated with dissipation (D, or 0 ) .  

One should not ignore the latter at low temperatures. (Ds, for example, vanishes at 
the spinodal line and in [3] the observed slowing down is traced back to this effect). But, 
even so a characteristic time for growth, zg, is obtained which is C-shaped as a function 
of quench depth whether the order parameter is or is not conserved 

z g  - ( A W ,  (AT);; 

zg - (AT);., (AT);;/2 

(q conserved) 

(q not conserved) 

where AT denotes the distance to the coexistence or spinodal curves. The exponents in 
(6) result from (4) and ( 5 ) ,  respectively. It may be recalled that R;’ - (AT)ix whereas 
RF1 - ( A T ) , ’ P .  

As one goes toward the spinodal line, the barrier height AE, decreases of course, 
while the critical radius R, increases. But, as Cahn and Hilliard have shown in their 
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seminal work [ 5 ] ,  the order-parameter profile varies smoothly on the scale of the full 
cluster size. Clearly then, the standard model-based as it is on sharp profile and modest 
supersaturation-cannot be applied in quantitative detail in the SP region. 

Nevertheless, the trend (equation (6)) of the growth time zg, as a function of super- 
saturation or undercooling, should stay valid over a wide range of quench depths as long 
as the concept of metastability, which governs nucleation, remains meaningful, i.e. 
provided the barrier height remains larger than thermal fluctuations, AEc > kBT. 
Indeed, far enough away from the critical point, this condition is enforced down to the 
close vicinity of the spinodal[4]. 

To summarise, we expect a non-monotonic variation with quench depth, not only of 
the nucleation time t,, but of the growth time zg as well. The latter is smoother (‘barrier 
free’, see (iii) above) and is controlled by the variation of R, with undercooling, itself 
non-monotonic. 

Quantitative experiments, or simulations, with selected characteristics (q conserved 
or not, distance to the critical point), would help assess the operative range of this simple 
model. 

I have benefited from helpful conversations with 0 BCthoux and P Desre. 
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